Final Report : STIR : High Performance Thermoelectric Cryo - coolers based on II - VI Low Dimensional Structures Report

نویسنده

  • Daryoosh Vashaee
چکیده

Number of Papers published in peer-reviewed journals: Final Report: STIR: High Performance Thermoelectric Cryo-coolers based on II-VI Low Dimensional Structures Report Title This program performed material design for high-performance thermoelectric (TE) cooler with a figure-of-merit ZT > 3. The cooler is fabricated from HgCdTe using a low dimensional superlattice structure. The TE coolers can operate at temperatures ranging from 30K to 300K, thereby providing a fundamentally new and disruptive method for achieving cryogenic cooling. In this STIR program we investigated (1) Modeling of HgCdTe Low Dimensional Structures and (2) Thermoelectric Cooler Design and (3) Partnership with Amethysts Research Inc. and SCD.USA to investigate the feasibility of integrating the TEC into their new TEC FPA/Dewar. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) 05/26/2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficient of Performance Optimization of a Single Stage Thermoelectric Cooler

In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...

متن کامل

Application of Spark Plasma Sintering for Manufacturing of Thermoelectric Materials

V-VI thermoelectric compounds like Bi2Te3-based alloys are well known for room temperature applications like Peltier coolers or thermogenerators. Their anisotropic physical properties and mechanical weakness are a problem for the manufacturing. To overcome the mechanical problem Spark Plasma Sintering (SPS) was used. 2 inch Wafers of polycrystalline bismuth telluride based n-type and p-type the...

متن کامل

Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures.

Recent advances in both theoretical and experimental studies on optimizing thermoelectric performance have proved to greatly benefit from nanostructure engineering. As a class of materials with the best thermoelectric properties near room temperature, V-VI alloy nanostructures, especially Bi(2)Te(3) and its alloy with Sb, Se and so on, have attracted a broad interest. This perspective gives an ...

متن کامل

High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, ...

متن کامل

On-chip Hot Spot Remediation with Miniaturized Thermoelectric Coolers

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in chip heat flux and growing concern over the emergence of onchip “hot spots” in microprocessors, along with such high flux regions in power electronic chips and LED’s. Miniaturized thermoelectric coolers (μ-TEC’s) are a most promising cooling technique for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015